An Educational Note On The 1D Heat Equation

SEFI SGI 2021, UiA
Wigand Rathmann
Dynamics, Control and Numerics
Department of Data Science, FAU
17. June 2021

Problem

Heat equation

$$
-k \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}} T(r)=\dot{q}(r) ; 0 \leqslant r_{0} \leqslant r \leqslant r_{1}
$$

Dirichlet boundary conditions:

$$
T\left(r_{0}\right)=T_{0} \text { and } T\left(r_{1}\right)=T_{1}
$$

Different geometries

 naturwissenschaftlich
FAKULTȦT

Different geometries

Heat equation

$$
k \frac{\mathrm{~d}}{\mathrm{~d} r}\left\{r^{n-1} \frac{\mathrm{~d}}{\mathrm{~d} r} T(r)\right\}=\dot{q}(r) ; 0<r_{0} \leqslant r \leqslant r_{1}, n=1,2,3
$$

Dirichlet boundary conditions:

$$
T\left(r_{0}\right)=T_{0} \text { and } T\left(r_{1}\right)=T_{1}
$$

naturwissenschaftlich
FAKULTATS

Linear Operator

Equation rewritten (1)

$$
-k(n-1) r^{n-2} \frac{\mathrm{~d}}{\mathrm{~d} r} T(r)-k r^{n-1} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}} T(r)=\dot{q}(r) ; 0<r_{0} \leqslant r \leqslant r_{1}, n=1,2,3
$$

naturwissenschaftlich
FAKULTATS

Linear Operator

Equation rewritten (1)

$$
-k(n-1) r^{n-2} \frac{\mathrm{~d}}{\mathrm{~d} r} T(r)-k r^{n-1} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}} T(r)=\dot{q}(r) ; 0<r_{0} \leqslant r \leqslant r_{1}, n=1,2,3
$$

Equation rewritten (2)

$$
-k\left((n-1) r^{n-2} D+r^{n-1} D^{2}\right)[T]=\dot{q}
$$

Linear Operator

Equation rewritten (1)

$$
-k(n-1) r^{n-2} \frac{\mathrm{~d}}{\mathrm{~d} r} T(r)-k r^{n-1} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}} T(r)=\dot{q}(r) ; 0<r_{0} \leqslant r \leqslant r_{1}, n=1,2,3
$$

Equation rewritten (2)

$$
-k\left((n-1) r^{n-2} D+r^{n-1} D^{2}\right)[T]=\dot{q}
$$

Equation rewritten (3)

$$
\mathcal{L}[T]=\dot{q}
$$

with

$$
\mathcal{L}:=-k\left((n-1) r^{n-2} D+r^{n-1} D^{2}\right)
$$

Linear Mappings

Linear Algebra

$$
\begin{gathered}
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
\mathbf{x} \mapsto A \mathbf{x}
\end{gathered}
$$

$$
\operatorname{ker}(A):=\{\mathbf{x} \in \mathbb{R}: A \mathbf{x}=0\}
$$

Linear Operator

Homogeneous Equation

$$
\mathcal{L}[T]=0
$$

with

$$
\left.\mathcal{L}:=-k\left((n-1) r^{n-2} D+r^{n-1} D^{2}\right) \quad \text { <ear } \mid \mathcal{L}\right)
$$

Well-posed for which n ?
Discuss for which n this formulation makes sense?

Linear Operator

Homogeneous Equation

$$
\mathcal{L}[T]=0
$$

with

$$
\mathcal{L}:=-k\left((n-1) r^{n-2} D+r^{n-1} D^{2}\right)
$$

Well-posed for which n ?
Discuss for which n this formulation makes sense?
Transfer

$$
\begin{aligned}
& \operatorname{ker}(\mathcal{L}):=\left\{f \in C^{2}\left(\left[r_{1}, r_{2}\right]\right): \mathcal{L}[f]=0\right\} \\
& \text { fundamental system }
\end{aligned}
$$ naturwissenschaftlich

FAKULTȦT

The Kernel $-n=1$

Homogeneous Equation

$$
\mathcal{L}[T]=-k D^{2} T=0
$$

Discussion

- What do you already know about the solution? NATURWISSENSCHAFTLICH
FAKULTAT

The Kernel $-n=1$

Homogeneous Equation

$$
\mathcal{L}[T]=-k D^{2} T=0
$$

Discussion

- What do you already know about the solution?

Legibly written

We have

$$
-k T^{\prime \prime}(r)=0
$$ naturwissenschaftlich

FAKULTÄt

The Kernel - $n=1$

Homogeneous Equation

$$
\mathcal{L}[T]=-k D^{2} T=0
$$

Discussion

- What do you already know about the solution?

Legibly written

We have

$$
-k T^{\prime \prime}(r)=0
$$

Discussion

- What do we know about T from this equation?
- Guess the fundamental system. naturwissenschaftlich
FAKULTÄt

The Kernel $-n=2$

Homogeneous Equation

$$
\begin{aligned}
\mathcal{L}[T]=-k\left(D T+r D^{2} T\right) & =0 \\
-k\left(T^{\prime}(r)+r T^{\prime \prime}\right)(r) & =0
\end{aligned}
$$

Discussion

- Can we guess the fundamental system again?
- What about constants?

$$
T^{\prime}+r T^{\prime \prime}=0
$$

Playing around?

Properties of the solution

$$
T^{\prime}(r)=-r T^{\prime \prime}(\delta)
$$

$$
u(r)
$$

$$
\frac{1}{r}
$$

Playing around?

Properties of the solution

$$
T^{\prime}(r)=-r T^{\prime \prime}
$$

Discussion

- Which type of functions fulfills

$$
f^{(k)}(x)=c x f^{(k+1)}(x), c \in \mathbb{Z} ?
$$

- Or starting with

$$
f(x)=c x f^{\prime}(x), c \in \mathbb{Z} ?
$$

- Find an expression for the k th derivative of $\ln , \ln { }^{(k)}$.
- Try to express the k th derivative of \ln by the $(k+1)$ st derivative NATURWISSENSCHAFTLICH
FAKULTAT

The Kernel $-n=3$

Homogeneous Equation

$$
\begin{aligned}
\mathcal{L}[T]=-k\left(2 r D T+r^{2} D^{2} T\right) & =0 \\
-k\left(2 r T^{\prime}(r)+r^{2} T^{\prime \prime}\right)(r) & =0
\end{aligned}
$$

Discussion

- Can we guess the fundamental system again?
- What about constants?

Further topics

Solving the boundary problem

$$
\begin{aligned}
& \qquad\left(\begin{array}{cc}
1 & f_{1}\left(r_{0}\right) \mid T_{0} \\
1 & f_{2}\left(r_{1}\right) \mid T_{1} \\
1
\end{array}\right) \\
& \{1, x\} \\
& \{1, \ln (x)\} \\
& \{1,1\} \\
& 1, x\}
\end{aligned}
$$ naturwissenschaftlich

Further topics

Solving the boundary problem

$$
\left(\begin{array}{ll}
1 & f_{1}\left(r_{0}\right) \mid T_{0} \\
1 & f_{2}\left(r_{1}\right) \mid T_{1}
\end{array}\right)
$$

Inhomogeneous ODE
Solving the ODE with a constant right hand side.

Thanks!

ODE-Type

If you know more application examples, with ODE of Eulerian type, please let me know.

